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Common Features in the Ultrasonic Relaxations of Aqueous 
Mixtures: the Importance of Water Structure 

By M. J. BLANDAMER,* N. J. HIDDEN, M. C. R. SYMONS, and N. C .  TRELOAR 
(Department of Chernistvy, T h e  University,  Leicester LE1 7RH) 

THE ultrasonic absorption of water-t-butyl alcohol alcohol-water r n i ~ t u r e s ~ , ~  although the extent of 
mixtures over the alcohol mole-fraction range this insensitive region is a function of the nature 
0 < x2 < 0.04 and the frequency range 1.5 to of the alcohol. A t  t-butyl alcohol mole fractions 
230 MHz is not significantly different from that of greater than 0.04, the ultrasonic absorption 
pure water.1-3 This is a common feature of many increases, rising to an intense maximum close to 
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x, = O-l.193 A similar pattern is observed for 
mixtures of other al~ohols.4~~ We report a 
summary of ultrasonic relaxation frequencies 
which are remarkably similar for a range of 
aqueous mixtures. 

The ultrasonic absorption over the frequency 
range 1-5 to 230 MHz has been fitted to a general 
equation of the form 

g / f 2  = B + -%/P + ( f / f c J 2 1  + A,/P + ( f / f c J 2 1  
where cc is the amplitude absorption coefficient, f 
the frequency, B the non-relaxing component, 
and A ,  and A ,  the relaxing components having 
relaxation frequencies fc, and fc , .  The two 
relaxation frequencies have minima close to the 
alcohol mole fraction where the ultrasonic absorp- 
tion, (a/f2), at  a given frequency is a maximum. 

Minimum ultrasonic relaxation frequencies and corresfionding mole fractiom, x2 for aqueous mixtures 

Non-aqueous 
component Temp. 

ButOH . .  .. .. 5 O  

25 
45 

PrnOH .. . . . .  0 
10 
20 

PriOH . .  . .  .. 0 
20 

Ally1 alcohol . . . . . .  0 
Et,NH .. .. .. 0 

25 

x2 a t  
(a / f  2)max 

0.10 
0.10 
0.10 
0.11 
0.1 1 
0.11 
0-15 
0-15 
0.15 
0.10 
0.10 

4.5 
5 
7 
6.5 
7 

11 
11 
8 

c 

- 

X s  

0.2 
0.15 
0.15 
0.2 
0.15 
0.15 
0.2 
0.2 
0.15 
- 

a Mole fractions corresponding to ( f c , )min  are less well defined a t  low-temperatures. 
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FIGURE. Variatioiz in relaxation frequency, fcl, with 
alcohol mole fraction for mixtures of water atzd t-butyl 
alcohol at 5'; the arrow indicates the mole fraction at 
which (u / f2 )  is a maximum. 

f c ,  
(fc,)min 

MHz 
60 
50 
50 
70 
70 
65 

100 
110 
80 
90 

160 

XI 

0.15 
0.15 
a 
0.125 
0-15 
a 
0.2 
0-15 
0.10 
0.10 

a 

A typical plot is given in the Figure. The mini- 
mum frequencies together with the mole fractions 
a t  which they occur are given in the Table which 
also lists the mole fractions a t  which (a/f2)  is a 
maximum. Both minimum relaxation frequen- 
cies are almost independent of temperature. 

The similarities suggest that, since bulk water 
is the only common component, the two relaxation 
frequencies must be associated with a reorganisa- 
tion of water structure. It has previously been 
suggested, lz that a water-clathrate model can 
satisfactorily accommodate the results in the very 
low mole fraction region and i t  seems possible that 
the relaxations under consideration involve co- 
operative reorganisation of similar structures. 
This co-operative nature of the process accords 
with the small temperature coefficient of the 
relaxation frequencies. 

(Receizjed, Jztly 26th, 1968; Corn. 1034.) 
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